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LETTER TO THE EDITOR 

Lattice derivation of modular invariant partition functions on 
the torus 

Vincent Pasquier 
Service d e  Physique Thkorique, C E N  Saclay, 91 191 Cif-sur-Yvette Cedex, France 

Received 5 October 1987 

Abstract. We express the partition function of the ADE lattice models on the torus in 
terms of partition functions of six-vertex models and  which can be computed in the 
continuum limit. Thus we recover the partition function of minimal models with C < 1 
and  new ones with C = 1. 

Since the observation [ 13 that modular invariant partition functions on the torus lead 
to the whole operator content of a conformal invariant theory [2], considerable work 
has been devoted [3 ]  to deducing these partition functions from the constraints of 
positivity and  modular invariance. Here, we obtain them from ( A D E )  lattice models. 
The method is to use a Temperley-Lieb equivalence [4,5] to re-express the partition 
function of a given model in terms of partition functions of simple models (SOS [6]) 
which can be computed in the continuum limit. 

The models considered below are characterised by a square lattice on a torus and 
a Dynkin or  Coxeter diagram (figure 1) or its affine extension (figure 2) .  The square 
lattice rotated by 45" has N rows and M columns (figure 3). The rows are numbered 
from 0 to N - 1, and the row numbered N is identified with that numbered 0. Similarly 
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Figure I .  Coxeter diagrams. 
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Name of the Diagrams Coxeter Exponents 
algebra number 
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Figure 2. Coxeter diagrams. 
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Figure 3. The lattice 

the columns are numbered from 0 to M - 1, the column numbered M being identified 
with that numbered 0. Each point of the Coxeter diagram (or its affine extension) has 
a ‘height’ marked on it as in figure 1. Each site of the square lattice is assigned an 
arbitrary height with the only restriction that heights on any neighbouring sites are 
also heights on neighbouring points of the Coxeter diagram and this assignment is 
called a ‘configuration’. 

It is standard practice to express 2 as the trace of a power of the ‘transfer matrix’ 
(cf [7]). We will write 2 directly as this trace. The (assigned) heights U,,, U , ,  . . . , uN-, , 
uN = U”,  of a column of sites 0, 1, .  . . , N - 1 of the lattice can be used to label a basis 
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(1) 

(2)  (s+%;)1/2 
= S(Ur-1, U , + , )  c 1 ~ 0 , .  . . ,  u j - l ,  ( + i + l ,  . * * 3 u N - 1 )  

m ;  SV,-I 

where Sa is the eigenvector of the incidence matrix [8] of the Coxeter diagram 
corresponding to the largest eigenvalue p. 

The partition function is written as 

z = Tr( U V ) ~ / ’  (3) 
with 

U = ( l + Z o ) ( l + & )  . . .  
V = ( 1 + C 1 ) ( l + C 3 ) . . .  . 

We will consider one more model, hereafter called the j model, defined as follows. 
Heights take half-integer values and are measured modulo f: Each site of the square 
lattice is assigned an arbitrary height with the only restriction being that their values 
on the neighbouring sites differ by ++. The configuration space is the same as the 
configuration space of the a2.f-l model (figure 2).  I f f >  1, this model may be defined 
by giving a direction to each link of the square lattice instead of assigning heights to 
the sites, the direction arrow pointing from the smaller to the larger height. In the 
case f= 1,  this is no longer possible, since one cannot decide whether is greater or 
less than O =  1 (mod 1 ) .  In fact, i f f =  1 ,  then the square lattice sites are divided into 
two subsets, those having the height 4 and their neighbours having the height 0; and 

01 

Figure 4. A column of the lattice C5 is represented at level 5. I t  induces a bar between u4 
and uh. 
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this definition by heights becomes trivial. In the case f =  1, our model will be defined 
by putting arrows arbitrarily on the links of the square lattice. 

For the f model, the formula corresponding to (2) is 

4 I u 0 , .  . . , Ut-], U, ,  U,+!, . . ' , U Y - 1 )  

= 6(u ,_ ,  , U l + I )  c z''+u;-2u~-, b", ' * . ,  Vt-1, U:, U , + l , .  . . ,  F N - 1 )  ( 6 )  
I <,,= (7, * 2 

where z is a complex number. We set 

(7)  , 1 / 2 +  z - I / 2  = p. 

Later we shall compare an f model with a model characterised by a Coxeter diagram 
corresponding to the same value of p. 

Expanding the trace in ( 3 )  as a sum of terms, each term can be represented 
graphically as follows. In  the elementary square of the lattice located at the ith row 
and j th column ( i  - j is odd), one puts a vertical bar if the term 6 is picked up in the 
ith matrix U or V in ( U V ) M ' 2  = UVUV. .  . (see figure 4) and one puts a horizontal 
bar if 1 is picked up. Thus, in each elementary square, there is either a vertical bar 
or a horizontal bar; the sites of the lattice are grouped into clusters; all sites of a cluster 
have the same height. These clusters can be separated by boundaries drawn on the 
dual lattice (figure 5 ) .  

One can further simplify this graphical representation (figures 6 and 7) .  Each 
cluster of sites is now represented by a point; points representing clusters with a 
common boundary are joined by a line. Clusters wrapping around the torus one way 
or the other are represented by thick points and other clusters (homotopic to a point) 
are represented by thin points. There is always one and only one cycle of thick points 
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Figure 5. A cluster decomposition. 

Figure 6. The graph corresponding to the cluster decomposition, figure 5 .  
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Figure 7. The graph of a cluster decomposition. 

(which may consist of a single thick point) and all other points are joined in a tree 
structure attached to the cycle of thick points. The contribution of such a graph to 
the partition function is a sum of terms, one for each allowed assignment of heights 
at points of the graph (configuration). The contribution of a configuration is a product 
of factors coming for each cluster and can be obtained as follows. 

Let us go back to the lattice representation of figure 5. Consider two possible types 
of corners (1) and ( 2 )  (figure 8) that can occur at a boundary of a cluster with height 
a. For corners of type ( l ) ,  the height a on the left (right) of the corner corresponds 
to U,(CT;) in the expression ( 2 )  of ZI and one picks up a factor S;’*. For corners of 
type ( 2 ) ,  the height a above (below) corresponds to ul+,(u,-,) and one picks up a 
factor around a boundary. There are 
three cases. Boundaries that surround the cluster take a factor Sa.  Boundaries that 
are surrounded by it take a factor Si’. Boundaries that wind around the torus take a 
factor 1. The resulting factor is S t + - h -  where b+(b-) is the number of boundaries 
surrounding (surrounded by) the cluster. If  a cluster does not wind around the torus, 
it is surrounded by one boundary which is represented by the link connecting the 
corresponding point to a cycle. The links around a cycle correspond to the clusters 
which wind around the torus. 

We want to express 2, the partition function of a model characterised by a Coxeter 
diagram, as a linear combination of Z,, the partition functions of f  models, 

if one takes the product of the factor 

2 

Figure 8. Two types of corner in a contour bounding the cluster a. The hatched line 
corresponds to the outside of a cluster. 
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In fact, we shall determine the coefficients U,, such that the equality is true for each 
term in the development of the trace (3): 

z = u / z ,  
(EN 

(9) 

where z(z,) is the contribution of an arbitrary graph to the partition function. 
Given a graph, one sees that if one sums over the heights of a cluster represented 

by a point at the extremity of only one link ( b ,  = 1, b- = 0), z(z,) is equal to p times 
the contribution z’(z;) of the graph with the link removed. Thus, to determine the 
U,, we can restrict ourselves to consider cycles (see figure 9). For cycles, the contribution 
of a height configuration is 1. The problem is therefore reduced to find such that 
for all even N one has 

T r l , =  c u,Tr1’, 
t € N  

where Tr l N ( T r  1;) counts the number of closed paths of length N on the Coxeter 
(A2,_]) diagram. To compute Tr 1 (the following argument is due to Kostov) let us 
define the matrix Gg,. that counts the number of paths of length N going from (T to 
U‘.  Clearly one has 

Tr l N  = T r  G N  = T r ( G ’ ) N  (11) 

where GI is the incidence matrix of the diagram and its eigenvalues are A,,, = 
2 cos( m7r/ h) .  h is the Coxeter number and m are exponents [8] (see figures 1 and 2). 
For the f models (A, , - ,  diagram) the eigenvalues of GI are equal to 

A j  = 2 cos( 5 j )  j =0 ,2 ,4 ,  . . . ,4f -2. 

If  we substitute the value of the trace in (10) we get 

N 

( 2 c o s y )  = 2  U, 
mtexponents  f e N  1=0,1. ., f - 1  

The equality must be true for all even N a 0 .  We therefore deduce the equation for 
the a,: 

n, = 2  U, l s m s h  (13) 
h / f  divides m 

Figure 9. The cluster decomposition, figure 7, after removing the clusters homotopic to a 
point. 
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where n, denotes the degeneracy (0, 1 , 2 , .  . .) of the exponent m (figures 1 and 2) .  
a, = O  if .f does not divide h. The resulting partition functions are listed in 
appendix 1. 

In the continuum limit, we expect the discrete height variable of the f model to be 
replaced by a continuous field cp, defined modulo f: We assume that the partition 
function takes the following simple form: 

The x integration is performed on a torus defined by its two complex periods wI, w 2  
such that T = w 2 / w 1  lies in the upper half-plane. 

To evaluate (14), one first performs the integral over fields cp periodic around the 
torus, the result being [9] 

where T~ is the imaginary part of T, 7 is the Dedekind function and 

N = l  

q = exp( 2i m). 

From the expression (15) of 2, one easily deduces the expression Z,,,, when the field 
cp takes a discontinuity m(m’) along w , ( w 2 ) .  2, is obtained by summing over Z,,,,. 
with m, m‘ a multiple off :  The computation done in (8) gives 

1 

M F 7-r 

It was shown in [ l ]  how to deduce from (17)  the scaling dimensions and spins of 
operators in the theory. 

The parameter g in (14) is not fixed and we assume that [ 101 

g = ( l  - l / h )  

g = l  

for the diagrams in figure 1 

for the diagrams in figure 2. 
(18)  

In the case of the diagrams in figure 1,  another value of g: g ’  = ( 1  + l / h )  can be reached 
if we modify the models in allowing sites not to be occupied by any height (vacancies) 

The partition function corresponding to the diagrams (figure 1 )  had been obtained 
from the constraints of modular invariance [3] and were rewritten in terms of ‘Coulomb 
gas partition functions’ in [9]. The partition function of 8, is the partition function 
of the four-state Potts model [12]. 

The configuration space of the a2,-l model is the same as the one of the n = f 
model and we can use the definition (6)  of to define a one-parameter deformation 
of the transfer matrix ( z  is a complex number of modulus 1 )  such that the model 
remains self-dual on the hole line. After performing a similarity transformation of the 
transfer matrix the weights can be made positive and are given by those of the F model 
[6] (see appendix 1 ) .  Using the parametrisation (18) of g we obtain the partition 
function of the deformed models 

11-21. 

2 = Z,(g). (19) 
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In the fin+, case, it is possible to generalise an argument of Wegner [13] in the 
Ashkin-Teller case to map the configurations of the model onto configurations of an a,,-, model where the heights are defined modulo a sign. From the F model weights 
we obtained a one-parameter family of transfer matrices (see appendix 2 ) .  The partition 
function is given by (14), with f =  2 n  - 1, but now, due to the indeterminacy of the 
sign of the heights, the field ut, is identified with -qp  The resulting partition function 
was computed in [12]: 

z = $ ( Z , ( g )  + 2Z,( 1) - Z,( 1)). (20) 

In conclusion we have reduced the problem of computing the partition function of 
the ADE lattice models on the torus to a simple system of linear equations (13). 

This work suggests that the comparison with f models can also be done at the level 
of the operators [8]. 

I wish to thank J Cardy, P Di Francesco, H Saleur and J B Zuber for interesting me 
in this problem. I would also like to thank M Mehta and I Kostov for an illuminating 
discussion. 

Appendix 1. List of partition functions 

Appendix 2 

The one-parameter family of weights which determine a self-duality line for the a,,_, 
and b,, models. 

The heights are labelled as in figure 2. 
The weights are given by 

U3 

P I  u4= W(u ,u*  

= W(U4U, 

= W ( a , a 3  

U 2  
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A>"- , '  

W ( u *  1, crlu, u + 1 )  = 1 

W(u*  1, UIU, u* l )  = z + z - ' =  w 

W(u, U* 1 IUT 1, U) = 1. 

6". The weights remain unchanged under the transformations: 

c r - n - 1 - a  o s u s n - 1  0 - 3  
0-0 
- 

n - 1 - n -  1. 

They are given by the preceding expression if all U, around the square are different 
from 0, 6, n - 1, 3. The remaining weights are given by 

W(l,O/O, l ) = w  

W(1,210,1)=1 

W(l,O[O, l ) = o - 1  

W(O,lIl ,  0) = ; ( U  + 1) 

W(O,lIl ,  2) = 1/Jz 
W ( 0 , 1 ~ 1 , O ) = ~ ( u - l ) .  
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